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ABSTRACT 

We propose that high frequency quasi-periodic oscillations (HFQPOs) can be 
produced from randomly-formed X-ray bursts (flashes) by plasma interior to  the 
ergosphere of a rapidly-rotating black hole. We show by direct computation of 
their orbits that the photons comprising the observed X-ray light curves, if due t o  
a multitude of such flashes, are affected significantly by the black hole's dragging 
of inertial frames; the photons of each such burst arrive to an observer a t  infinity 
in multiple (double or triple), distinct "bunches" separated by a roughly constant 
time lag of Atl,,/M - 14, regardless of the bursts' azimuthal position. We argue 
that every other such "bunch" represents photons that follow trajectories with 
an additional orbit around the black hole at the photon circular orbit radius (a 
photon "echo"). The presence of this constant lag in the response function of 
the system leads to a QPO feature in its power density spectra, even though the 
corresponding light curve consists of a totally stochastic signal. This effect is 
by and large due to the black hole spin and is shown to gradually diminish as 
the spin parameter a decreases or the radial position of the burst moves outside 
the static limit surface (ergosphere). Our calculations indicate that for a black 
hole with Kerr parameter of a / M  = 0.99 and mass of = 10Ma the QPO is 
expected at a frequency of U Q ~ O  1.3 - 1.4 kHz. We discuss the plausibility and 
observational implications of our model/results as well as its limitations. 

Subject headings: accretion, accretion disks - black hole physics - X-rays: 
galaxies - stars: oscillations 
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1. Introduction 

Following the inspiring observational discoveries of quasi-periodic oscillations (QPOs) 
from compact objects [see, e.g., van der Klis 2000 for neutron star low-mass X-ray binaries; 
Strohmayer 2001a,b and Cui et al. 1999 for stellar-mass black hole systems; Strohmayer 
et al. 2007 for ultraluminous X-ray sources (ULXs)], a number of theoretical scenarios have 
been proposed to explain the physics behind the QPO observations. These models are based, 
among others, also on the dynamics of relativistic accretion disks, especially for the QPOs 
of systems thought to harbor black holes. For example, it has been proposed that the X-ray 
modulation giving rise to the observed QPOs can be produced at the precession frequency of 
accretion disks due to relativistic dragging of inertial frames around rapidly-rotating black 
holes (Lense & Thirring 1918), with the QPO frequency used to estimate the range of the 
hole's spin parameter (e.g. Cui et al. 1998; Aschenbach 2004; Schnittman & Bertschinger 
2004; Schnittman et al. 2006, for XTE 51550-564, GRO 51655-40, GRS 1915+105, Cyg 
X-1, and GS 1124-68). On the other hand, resonance frequencies among various disko- 
seismic oscillation modes (e.g. Nowak et al. 1997; Kato 2001) have been invoked to explain 
the observed 2:3 frequency commensurability in XTE 51550-564 and GRO 51655-40 (e.g. 
Abramowicz & Kluiniak 2001; Kluiniak & Abramowicz 2001; Schnittman & Bertschinger 
2004; Donmez 2007). More recently, Aoki et al. (2004) argued that radially propagating 
shocks in relativistic accretion disks could produce the observed QPOs from black hole sys- 
tems (GRS 1915+105 and GRO 51655-40). Finally, considerations of inhomogeneities of 
accretion disks (e.g., due to local magnetic flares and/or orbiting clumps) have led some 
authors to investigate orbiting hot spot models (e.g. Karas 1999). The models in the above 
(necessarily incomplete) list can provide frequencies in agreement with those of the observed 
QPOs by the judicious choice of some of the systems' dynamical parameters. The QPO 
features in these models rely on an underlying oscillatory behavior of the light curve which, 
however, can be easily obscured in the presence of noise, even though the QPO is clearly 
present in the power spectra. 

In this paper, we discuss a process for QPO formation that relies not on an underlying 
(but noise-obscured) oscillation, but on an "echo" of the input signal (the QPO behavior 
then follows from a well known theorem of Fourier analysis). As such, we show that QPO 
features are possible even for a totally random signal, which in itself differs little from white 
noise. We show that such an "echo" (and the concomitant QPO) is possible for photons 
emitted by an accretion disk whose Innermost Stable Circular Orbit (ISCO) reaches within 
the ergosphere of a rotating black hole, even if the photon emission is random in time, orbital 
phase and isotropic in the plasma frame. Our analysis of this process indicates that these 
features imply the presence of. unobserved as yet, high frequency QPOs (HFQPOs), which 
rely crucially on the dragging of inertial frames and are absent for slowly rotating black 
holes. 



Our paper is structured as follows: In 52 we provide a general description of the model, 
details of the photon kinematics and the response function of the system. In $3 we give a 
prescription for constructing stochastic model light curves and show that their power density 
spectra (PDS) exhibit the QPO features as anticipated. Finally, in $4 we review our results, 
make contact with observations and discuss prospects of future work. We show the derivation 
of the radial null geodesic equation in the Appendix. 

2. Description of the Model 

The model we consider consists of the standard geometrically thin, optically thick ac- 
cretion disk (e.g. Novikov & Thorne 1973; Page & Thorne 1974) that extends to the ISCO. 
We assume the production of instantaneous X-rays in short bursts (short compared to the 
local orbital period) at small heights above the disk as a result of either flares from the re- 
connection of magnetic field loops anchored in the disk (e.g. Galeev et al. 1979; Haardt et al. 
1994; Poutanen & Fabian 1999; Nayakshin & Kazanas 2001; Czerny & Goosmann 2004), or 
of standing shocks (e.g. Fukumura et al. 2007). To simplify our calculations we consider 
observers at small latitudes and we can thus restrict with good accuracy the computation 
of photon orbits on the equatorial plane (6' = ~ 1 2 ) .  We assume that the X-ray flares occur 
along the circumference of a radially thin annulus randomly both in position and in time. 
The small height of the disk and the source of the X-ray flares guarantee that except for the 
photons intercepted by the disk, the remainder can reach unimpeded the observer at infinity 
at nearly equatorial orbits. We assume that the photons are emitted isotropically in the ro- 
tating plasma rest frame [this entails some subtleties (see e.g. Fukumura & Kazanas 2007)] 
and their trajectories are influenced by both the motion of the emitter and the dragging of 
inertial frames (the marginal orbit is inside the ergosphere for sufficiently large values of the 
black hole spin). We collect the photons at a large radial distance (r,/M = 600 where M 
is black hole mass) as a function of time for different relative positions between the X-ray 
flare source and the observer to compile the response function of the system for observers at 
small disk latitudes. 

To compute the photon orbits we adopt the Kerr metric in Boyer-Lindquist (BL) co- 
ordinates (r, o , # ~ )  and geometrized units (G = c = 1 where G is the gravitational constant 
and c is the speed of light). Distance and time are normalized by black hole mass ibf [i.e. 
r = 1.5 x lo5 (h4/,Lfa) cm and t = 5.0 x (iV1/iWa) s]. The accretion disk extends from 
an unspecified outer radius to an inner radius (of ISCO) at r = r,,, within which the matter 
freely spirals in toward the event horizon. Hence, we assume that the X-ray source at (r,, 4,) 
in the disk region follows the Keplerian motion, while the source inside the ISCO must have 
radial and azimuthal motion with its energy and angular momentum at the ISCO being 
conserved subsequently. Plunging motion measured in a locally non-rotating reference frame 



(LNRF) is described by 

where A, - r: - 2Mr, + a2, A, - (r: + a2)2 - a2A: and a denotes a dimensionless Kerr 
parameter. The angular velocity of the source is given by R, E u$/ut while w describes the 
angular velocity due to the dragging of inertial frames, and the four-velocity components, 
ut, uT and u4, satisfy the normalization condition (upup = -1). For Keplerian motion we 
have R, = RK = ~ ~ 1 ~ / ( a ~ ~ 1 ~  + r:l2) and uT = 0. We numerically solve the exact null 
trajectories by specifying the position of a burst (r,, $,) and the photon's impact parameter 
b (or specific axial angular momentum), employing the following equations of motion (see, 
e.g., Appendix in Chandrasekhar 1983) 

dr  - .i. - - -  
<'I2 cos2 S ( i r A l  sec 4 - 2 a ~ A ' / ~  tan 6) 

dX r1/2 [r3(r - 2M) + a2(r2 - 2M2) + 2a2M2 cos(2b)l 

where A - r2 - 2Mr + a2, < E r3 + a2(r  + 2M),  X is the null affine parameter, and 6 
measures photon's emission angle between propagation direction and radial direction (e.g., 
Misner et al. 1973, p. 675) in the LNRF (as opposed to the rotating fluid frame). See Ap- 
pendix for the derivation of radial component of null geodesics (also Fukumura & Kazanas 
2007, for a similar discussion of poloidal geodesics). We must take into account the azimuthal 
beaming effects (photon focusing) on the emitting angle 6 at the source position (r = r,), 
particularly in the innermost regions ( r  2 r,,,) where the Doppler effects become significant. 
This is defined as 

sin a 
6 = arctan 

y (v + cos a )  

where a measures photon's emission angle between propagation direction and radial direction 
in the rest-frame of the source (as opposed to LNRF), v denotes the total three-velocity of 
the source measured in LNRF. and y = l/d=. We stress that both quantities, cr 
and 6, are defined as photon's angles between emission vector and radial component vector 
in two different frames, which are related through the Doppler boost by equation (6). In 
our computations a (rather than 6) is chosen uniformly in fluid frame for isotropic photon 
emission. In the Appendix we explicitly show the definition of 6 and its relation to the 
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Fig. 1.- Sample signals from two random X-ray bursts (out of a total of Nb = 6000) at (a) 
q5s,i = 0' and (b) q5s,i = 180" for a / M  = 0.99 and r, = r,,. In each phase Nph = 200,000 
photons are isotropically emitted. Arrows indicate a roughly constant time lag Atlag/M 3 14. 
Relative positions of the observer, source and the black hole are illustrated. 

photon's impact parameter b. Kote that 6 -+ c-u as v -+ 0 (i.e. no beaming case) as expected. 
We then consider locally isotropic emission from each burst in the fluid frame and trace the 
individual photon ray by solving the geodesic equations in Kerr geometry. 

For a given source position (r,, q5,,%) (where q5,,, = 0 for the source located between the 
observer and the black hole) we collect the times t, of the photons arriving at r = r, = 
600M within an angular bin of Aq5 = lo centered a t  the observer, to produce the response 
function of the system for the specific source location I,(t; r,, $,,,) [photon/time]. A total 
of Nph = 200,000 photon rays were computed from a single source. By varying the phase 
q5,,, of the source relative to the observer between 0 and 27r we then compiled the response 
function of the system for all +,,, for a given r,, and the obtained photons were binned in 
time bins of size M. Samples of this response for (a) q5,,, = 0" and (b) 180" are given in 
Figure 1 for a black hole with a / M  = 0.99 and emission from the marginally stable orbit, 
i.e. r, = r,, 3 1.45 M. One can plainly see that the response function consists of a series of 
pulses separated by approximately Atlag/iV 3 14, regardless of the azimuthal position of the 
source. These represent photons arriving at the observer either directly or correspondingly 
after one or more orbits around the black hole. Also, although the observer is physically 
closer to the source in (a) than in (b),  he/she detects the signals emitted in (b) earlier. This 
is due to the combination of the strong Doppler beaming due to the rotation of the source 
and the dragging of inertial frames that send most photons in case (a) around the black hole 
rather than directly into the observer's line of sight. Sample of photon trajectories emitted 
from a source with 4 , ,  = 0" (corresponding to Fig. la )  reaching the observer are shown in 
Figure 2. 

In fact, Figure 2 encapsulates the essence of the effect discussed herein: Because of the 
frame-dragging effects for a source within the ergosphere, even those photons with negative 



angular momenta (going backward in the local frame with respect to the hole's rotation) are 
forced to propagate in the same sense as the rotating hole (the photon escaping directly to 
the observer in the upper right quadrant of Fig. 2 is one of them). All other photons can 
reach the observer (at phase g!~,,~ = 0" in Fig. 2) only by moving in the direction of the hole's 
rotation; as such they can do so by moving by an angle that is a fraction q of 27r (q = 0 
for dashed ray; q = 1 for gray ray, and q = 2 for solid dark ray) to produce the response 
of Figure la.  As we show explicitly in the next section, it is the constancy of this time-lag 
that is responsible for the presence of QPOs in the system. Such a constant lag is almost 
absent, however, for photon sources outside the ergosphere or in the Schwarzschild geometry, 
leading to qualitatively different results in these cases. 

Fig. 2.- Representative photon rays corresponding to the response function in Figure la .  
The trajectory in the upper right quadrant (dashed curve) is a backward emitted photon. 
The gray and dark curves (solid curves) represent photons that reach the observer after 27r 
and 47r radians, respectively. 
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To be sure, even in the Schwarzschild geometry one expects that some photons can reach 
the observer after going around the hole by an angle that is an integer-multiple of 27r, but their 
number is much too small to make an observable contribution to the response function. In 
support of this claim we present similar computations in a Schwarzschild geometry in which 
the frame-dragging effect is absent and the marginally stable orbit is larger (r,,/hI = 6). The 
response functions for (a) +,,, = 90" and (b) 165" are depicted in Figure 3 for iVph = 200.000 
photons. It is apparent that the response function in this case comprises a very large peak 
at time t/hI -- 610. a much smaller one at t/ilf 21 632 and two additional even smaller 
ones separated from this last one by Atla,/iLl .- 16 and Atla,/M 2 32 respectively. i.e 
indicating the presence of a constant lag in this particular phase too. In order to get a better 
understanding of the orbits responsible for these peaks and their relation to  the corresponding 
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Fig. 3.- Same as Figure 1 but for a / M  = 0 and r, = r,, = 6M. No constant time-lag is 
seen. 

orbits of the Kerr geometry we did obtain and plot in Figure 4 the orbits of the photons 
corresponding to these peaks. Thus the largest peak corresponds to photons that arrive 
at the observer directly from the source (in the retrograde direction with respect to  the 
source direction), while the smaller one from photons that go around the hole by an angle 
A4 e 3x12 in the prograde direction. The next much smaller peak at t /M = 632 + 16 is due 
to photons that arrive at the observer after going around the hole by an angle A$ 21 5 ~ / 2  
in the retrograde direction and the one at t / M  = 632 + 32 after an angle A$ 21 7 ~ / 2  in 
the prograde direction. As the azimuthal angle $s,i approaches 180°, both the two largest 
and two smallest peaks move closer (as expected by symmetry) to obtain approximately the 
same normalization and merge for $s,i 21 180°, indicating that their time-lag is in fact not 
constant but depends strongly on the value of the phase angle $,,,, unlike the situation for 
the Kerr geometry of Figure 1, where the lags are independent of the source phase. This is 
a crucial point in our model. 

3. Model X-ray Light Curves and Timing Analysis 

We have used the response function constructed as above to produce synthetic light 
curves. In order to avoid the introduction of QPO features by the rotation of the emitting 
sources, we have made the flare emission instantaneous and positioned the sources at random 
values of 4s,i, uniformly between 0 and 27r; we also introduced the flares randomly in time 
using the following prescription of the time interval ATi between the i-th and (i + 1)-th 
bursts 

AT, = T x 1 In {rnd (0 , l ) )  I , (7) 

where is a mean timescale between bursts and rnd(0 , l )  denotes a random number between 
0 and 1. We have chosen T z fTmb where Torb(rs) = 27r(r;l2 + U M ~ / ~ ) / ~ V I ' / ~  is the Keplerian 
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Fig. 4.- Representative photon rays corresponding to the response function in Figure 3a. 
The trajectories in the upper right quadrant (dashed curves) are backward emitted photon. 
The gray and dark curves (solid curves) represent photons that reach the observer after 
n + n/2 and 3n + n/2 radians, respectively. 

orbital period at r = r, and f (f N 1) characterizes the frequency of burst occurences relative 
to the orbital period Torb (the precise value of f is in fact not relevant for the shape of the 
power spectrum we are interested in). 

Each burst produces a characteristic signal I i( t;  r,, $,,;) unique to that specific azimuthal 
position 4s,i with Ii(t;  r,, g5s,i) denoting the intensity of the signal of the i-th burst as shown 
in Figures 1 and 3. The entire bolometric light curve then is the incoherent superposition of 
similar signals corresponding to the randomly produced flares, i.e. 

where Nb (set to be 6,000) is the total number of X-ray bursts used in a given model light 
curve. Note that each flash contains Nph = 200,000 photons. 

Using the above prescription we have produced sets of model light curves varying the 
parameters Nb and f for the same values of the black hole parameters used to produce 
Figures 1 and 3. The simulated light curve seen by the observer is shown in Figure 5 where 
lVb = 1000 bursts are considered in (a) and the first 100 bursts are extracted from (a) in 
(b). They exhibit no apparent periodicity, given the random positions d,., and times of the 
induced flares AT,. We find that the characteristic appearance of the light curve essentially 
remains the same for the Schwarzschild cases too. 

We have then used standard analysis tools for the Fourier transform F ( w )  to produce 
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Fig. 5.- Two sample light curves generated as discussed in the text. (a) The light curve of 
a series of Nb = 1000 bursts from sources at radius r = r ,  = 1.45M for a black hole with 
a / M  = 0.99 and f = 1. (b) The light curve of only the first 100 bursts of the same series. 
It is apparent that these are totally random. 

the PDS ( F ( w ) ( ~  of these light curves along with the Autocorrelation Function (ACF) R(T).  
These are shown in Figure 6 for various source radii, i.e. r, > r,,, r, = r ,  and a plunging 
orbit with r, < r,,, for a black hole with a / M  = 0.99. A characteristic peak is clearly seen 
in the PDS at angular frequency of wQpoM N 0.4 and its higher multiple modes, which for 
M = 10Ma corresponds to a peak frequency u~po N 1.3 - 1.4 kHz. The ACF exhibits also 
a prominent peak at the equivalent time lag of T I M  14 - 15 and perhaps encapsulates 
better the underlying physics behind the QPO, i.e. the presence of a well-defined time lag 
(i.e. an "echo") in the response of this system. This is best seen, e.g., in Figures 6a-d. 
The QPO pattern (peak frequency and width) remains essentially the same regardless of the 
source position, as long as it is within the ergosphere. On the other hand, as r, approaches 
the static limit ( r  = r,,,,i, = 2M near the equator), the QPO signal begins to  disappear (see 
Figs. 6e and f), since the time-lags between the peaks of the response function is no longer 
constant. as discussed earlier. 

It should be noted that the choice of the times of flare injection [equation ( 7 ) ]  guarantees 
that in the absence of the lags discussed above the corresponding PDS would be just white 
noise. However. because our timing resolution in this numerical experiment is fM, we have 
approximated each "bunch" of photons received at a given angle and a given resolution 
interval as a Gaussian of area normalized to the number of photons received in each interval 
and FLVHM equal to Ill. It is precisely this finite width of our '.shotsn that leads to the 
high frequency cut-off of the PDS given in Figures 6a-d. Of course, at the low frequencies 
the PDS is that of white noise. 

In order to study quantitatively the QPO feature in this model we have also examined 



its dependence on the black hole rotation a for r, = r,, in Figure 7. To do so we select two 
values for the black hole spin, namely a / M  = 0.995 and a / M  = 0.9428. The first was chosen 
to verify that the effect becomes more prominent with the increase of the black hole spin; the 
second value was chosen by the requirement that the equatorial boundary of the ergosphere 
be equal to that of the ISCO, i.e, that r,, = rStai, = 2M.  The first case yields clearly 
prominent QPO and peaks at the appropriate lags in the ACF. However, these features 
become almost statistically insignificant as the spin parameter approaches the critical value 
of a / M  = 0.9428 (for which r, = r,, = rStati,) for the reasons discussed in the previous 
paragraphs of this section. 

We have also performed a similar calculation for a Schwarzschild black hole case for 
r, = r,, = 6 M  to examine whether the QPO features we have found in Kerr geometry may 

' 
also be produced in the absence of black hole rotation. In this case the PDS (not shown 
here) exhibits no QPO features similar to those of the Kerr case (as expected). The reason 
is the absence of a constant time-lag between the two major peaks of the response function 
(see Fig. 3); the normalization of the two minor peaks is just too small to make a difference 
in the PDS, despite the presence of roughly constant lags between them at some phases. The 
corresponding ACF also showed no particular coherent timescale. We have repeated similar 
computations for various source radii (r, 2 r,, and r ,  < r,) for Schwarzschild case and 
found that in no case the QPO features seen above were produced. As discussed above this 
is due to the absence of a constant time lag in the system response. We will come back to  
discuss this issue in 54. Of course, should there be a reason that a particular phase is favored 
as the site of the X-ray flares considered by our model, then one would expect QPOs to be 
present for sources in a Schwarzschild geometry too. 

Finally, we have checked that the feature obtained is not simply an artifact due to 
photon statistics by changing the number of bursts and the random number sequence used 
and indeed nearly identical results were consistently found. Note that for a given black hole 
rotation a,  there are no free parameters other than the radial position of the flares r,, and 
the mean timescale of each burst T, neither of which changes the value of the lag in the 
response function. 

4. Discussion 

We have presented above a process that can lead to  QPO features in the PDS of accreting 
black hole systems. This process is to a certain extent different from the typical QPO models 
in the literature in that it relies on the "echo" of a (however random) signal for the emergence 
of the QPO in the observed PDS. By contrast, most QPO models invoke the presence of 
an underlying (but perhaps obscured due to noise) oscillation in the emitted photon flux. 
Whether this qualifies it as an alternative QPO model or not is, in our view, a matter of 



convention. However, it provides a mind-set concerning the QPO phenomenon that deviates 
from that of the more conventional considerations which may lead to novel future insights 
on the subject. The difference of these two distinct QPO notions is perhaps exemplified best 
mathematically by the corresponding ACF, which in one case has an oscillatory behavior 
while in the other the double peak form presented in Figures 6 and 7. 

As discussed in the previous section, the "echo" of the proposed model is the result 
of the black hole angular momentum a and the ensuing dragging of inertial frames on the 
trajectories of the photons emitted within its ergosphere; as such, this "echo" is absent in 
black holes of sufficiently small values of a. This is not the first time that frame-dragging 
has been invoked to account for a certain aspect of the QPO phenomenon. For example, 
the same effect and the accompanying Lense-Thirring disk precession has been invoked to 
account for the dependence of the intrafrequency correlations of several low frequency QPOs 
(Stella & Vietri 1998; van der Klis 2000; Schnittman et al. 2006); the effect we describe 
herein is different in that it affects the orbits of individual photons, rather the orientation of 
the entire disk. 

One should further note that,  because the "echo" lags that produde these QPOs depend 
only on the background geometry of the accreting black hole (they are roughly equal to 
the length of the circular photon orbit for this geometry), they (and also the resulting 
QPO frequencies) are independent of the source flux (the accretion rate). On the other 
hand, given that the QPOs of accreting neutron stars and most of the QPOs of accreting 
black holes do depend, in general, on the source flux (van der Klis 2000), they are likely 
due processes different from that described above. Nonetheless, as discussed in 51, QPOs 
that do not depend on the source flux have been discovered in a number of galactic black 
hole candidates (Strohmayer 2001a,b). However, the frequencies of these latter QPOs are 
much too small (vQpO 100 - 400 HZ) to  be attributed to the process described herein 
[vQpo z 1400 (lO~Va/M)], unless our understanding of strong gravity physics is in significant 
error. 

Up to this point, the discussion of our model considered flares whose duration is much 
shorter than the orbital period of the accretion disk near its ISCO. Clearly. the "echo" 
process discussed herein is present for longer flare durations, even if the latter exceeds the 
local orbital period. However, in this case the model becomes very similar to those of orbiting 
hot spots discussed earlier (Karas 1999; Schnittman 2005). We have produced a number of 
model light curves assuming the flare duration to be several times the ISCO orbital period 
(i.e. just like in the orbiting hot spot model) and computed the corresponding PDS and 
ACF. In this case, the geometrical echo, while still present, makes only a small contribution 
to the PDS, whose QPOs are now dominated by the orbiting hot spot periodic motion. 

While the process we discussed above is quite robust (it depends only on the geometry 
of the accreting object), its potential observability depends on a number of factors. To begin 



with, our calculations were performed exclusively on the equatorial plane of a Kerr black 
hole; therefore, our present results are valid only for disks that are geometrically thin and for 
observers at relatively low latitudes. For observers at moderately higher latitudes (or thick 
disks), our orbit calculations have to be supplemented with those for the 8-coordinate (to 
follow the poloidal motion) that have been omitted so far in this work. However, the essence 
of the effect we discussed above, i.e. forward thrust of all photon trajectories produced 
within the ergosphere, whether equatorial or not, is expected to be present in that case 
too and thus qualitatively we expect the same phenomenon to be conditional1 y observable 
for non-equatorial source/observer configurations. Our preliminary calculations indicate the 
presence of such QPO for observers at latitudes at least as high as N 30" from the disk 
mid-plane. Quantitative analysis of this aspect of the problem, which bears the application 
of these ideas to thick disks, will be presented in a future publication. 

Another limitation of the model discussed in the earlier sections is that of the source 
radius r,. The response frames of Figure 1 were computed assuming the source to be on the 
ISCO at r,/M - 1.45. Changing the source radius leads to a quantitatively similar behavior, 
i.e. the ACF still exhibits a peak at the same value of the lag r / M  E 14, as long as the 
source of photons is located within the static limit (ergosphere), i.e. for r,/M 5 2 near the 
equatorial plane. Interestingly, for the value a / M  = 0.99 used in these calculations the ACF 
peak at TIM E 14 disappears gradually as the source radius increases past r , /M 2 2 ,  i.e. 
as the source moves outside the ergosphere, a fact which suggests that the effect we have 
presented is in fact due to  the strong dragging of inertial frames. Equivalently, we anticipate 
the gradual disappearance of this peak in the ACF as the value of the black hole spin a 
decreases down to a critical value of a / M  N 0.9428 (where the radius of ISCO becomes 
equal to that of static limit) and the ergosphere shrinks to leave much of the disk outside. 
While the frame-dragging is still operative even at radii outside the static limit, it is simply 
not effective enough to cause significant azimuthal beaming. 

We have in fact checked that the effect we consider is not due to the source proximity 
to the horizon (a situation possible without free fall onto the hole only if the latter is rapidly 
rotating) by computing the orbits of photons from radii as small as r,/M -- 2.1 by matter 
in-falling (in the plunging region of r, < r,,) onto a Schwarzschild black hole. In computing 
the photon orbits in this last case we have taken into account all the components of the 
velocity of the in-falling plasma, calculated by assuming that it began its in-fall from the 
ISCO. Plunging gas thus preserves its ISCO energy and angular momentum. We found that 
for flares that take place close to the horizon (r,/ibf -- 2.1) most photons end up into the 
black hole (as expected); however, the behavior of the response of the escaping photons in 
no case gave us the constant time-lag obtained in the rapidly rotating black hole case, to 
produce QPO features in the PDS. In the case of a Schwarzschild black hole, an (unstable) 
photon circular orbit lies at r, = 3111 < r,, inside the plunging region, from which radius one 
would expect higher-order photons (multiple orbit photons). However, since the plunging 



X-ray sources also possess significant radial velocity component at this radius close to the 
horizon, many photons emitted a t  r,/M = 3 are Doppler-beamed in the direction of the 
source motion. The radial beaming effect therefore keeps most of the photons from being 
emitted in an azimuthal direction, effectively suppressing their multiple orbits. 

Finally, to explore even the most likely case to produce QPOs in a Schwarzschild geom- 
etry, we computed the response function of the system for a source at an unstable (Keple- 
rian) circular orbit at r / M  = 3.001. At this radius, the high rotational speed of the source 
(v E 0.9995~) produces effects similar to the dragging of inertial frames, because most pho- 
tons are beamed in the forward direction by the source rotation. The corresponding response 
function and photon orbits for a source at 4,,i E 90" are given in Figures 8a,b, while the 
corresponding PDS and ACF in Figures 9a,b. As it can be seen there, for this specific source 
position, most photons reach the observer after going around the black hole by A+ - 351r+~/2 
while the fraction that reaches after Aq5 21 51r + 7r/2 is comparable but smaller; there are also 
a small number of photons that reach the observer in the counter clockwise direction after 
A4  E 271 + 7112; photons that reach the observer after a larger number of rotations are not 
discernible a t  this resolution. However, as the source phase 4, changes, while the lag between 
the major peaks remains roughly constant, the relative normalization shifts quickly and for 
most of phases the response is dominated by a single peak. This fact, along with the random 
choice of the phase of a given burst of our light curve prescription, "washes-out" potential 
QPO features, leading to the PDS shown in Figure 9a. On the contrary, in the Kerr case, 
the frame-dragging aided azimuthal beaming helps a significant fraction of the photons orbit 
around the black hole for all values of the phase angle 4,.  This is an essential difference 
between Schwarzschild and Kerr black hole cases, which we conclude is manifested as the 
QPO feature we see here. 

Up to this point we have only considered the time correlations between the photons 
emitted by the accretion disk without any reference to their energy. However, if these 
photons are of a specific energy (i.e. the Fe transitions observed in accretion disks), there 
exists a relation (redshift) between the emitted and the received photon energies given by 

where RK is the Keplerian angular frequency, and v, is the azimuthal component of the X-ray 
source velocity measured in LNRF. It would therefore be of interest to consider, in addition 
to the time correlations, also their additional dependence on the photon energy (or energy 
shift factor) g; the impetus for such a study comes from the observed energy dependence of 
the geometry attributed QPOs in GRO 51655-40 (e.g. Strohmayer 2001a). We hope to look 
into this as well as the above unresolved issues in a future publication. 

We would like to conclude with some general remarks concerning the "light echo" re- 
sponsible for the QPOs presented in this paper: This is a very generic process and would be 



present a t  any source that exhibits a delay in its response function, not necessarily the one 
we described in this note. The same point has been made earlier' (Kazanas & Hua 1999) 
in a different context and we believe that it may have broader applicability. It  should be 
noted, in this same context, that the response of an axisymmetric disk does not exhibit any 
such features, however, the response of a warped disk (e.g. Hickox & Vrtilek 2005) should; 
therefore such disks may exhibit QPO features of the kind described herein at the periods 
comparable to the light crossing time across the disk, features that maybe worth searching 
for in the data. 

Finally, we would like to point out that the lack of apparent phase coherence in this 
model makes the PDS quite noisy and therefore we expect that the detection of such features 
may require their search in the light curves of higher mass objects that would push the 
corresponding frequencies to lower values that are easier to detect (perhaps intermediate mass 
black holes associated with ULXs or nearby AGN), using low background, high throughput 
missions like Constellation-X. 

We would like to thank the anonymous referee for a number of useful and insightful 
suggestions. This research was supported in part by an appointment to the NASA Postdoc- 
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5.  Appendix 

In this Appendix we show the definition of the local angle 6 of photon emission in 
LNRF and its relation to photon's impact parameter b (which is defined as specific angular 
momentum). We then explicitly derive radial component of the geodesic equation in terms 
of 6 which we have integrated in producing Figures 2, 4 and 8 in §2 and 3. First, toroidal 
velocity of (either a massive or a massless) particle seen by a local observer in LNRF of Kerr 
metric is given by 

where we restrict ourselves to equatorial trajectories (0 = n/2) in the disk plane. In this 
frame the photon emission angle 6 between the propagation direction and the radial direction 
(e.g. Misner et al. 1973, p. 675) is defined as 

v+ C j. 
cot 6 - = 

v6 (AA)'I2 Q) - ' 

On the other hand, radial component of the geodesic equation is given by 

where R(r )  = (r2 + a2 - ~ b ) ~  - A(b - a)2 for equatorial trajectories and b is photon's impact 
parameter. With the help of equations (3) and (4) one can express b in terms of j. and S as 

Substituting equation (14) into equation (13) one obtains an explicit expression for j. in 
terms of the local angle 6 only as 

<'I2 cos2 S (&rAl sec 61 - Z U M A ~ / ~  tan 6) 
j.*(S) = 

r1I2 [r3(r - 2M) + a2(r2 - 2M2) + 2a2M2 cos(26)I ' (15) 

which is equation ( 5 ) :  and the sign in the numerator depends on the direction of photon 
emission in the rest-frame of fluid/source. Correspondingly, equation (14) is now rewritten 
as 

< sin(26) [f rAI sec 61 - 2 a ~ ! l A ' / ~  tan 61 
b'(S) = 2A1I2 [r3(r - 2M) + a2 (r2 - 2M2) + 2a2A12 cos(2S)j ' 
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Fig. 6.- Timing analysis of random X-ray bursts with a/iW = 0.99 for r,/iJf = 1.3 (top 
rows), 1.45 (middle rows) and 2 (bottom rows). We set ,Vb = 6000. Left columns show the 
average power density spectra (PDS) while right columns show the corresponding autocor- 
relation functions (ACF). In the ACF we show two cases: fib = 6000 (dark curves) and 100 
(gray curves) for comparison. 
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Fig. 8.- (a) The response function for a source a t  an unstable (Keplerian) circular orbit at 
r,/M = 3.001 at a phase 4, = 90". The two large peaks correspond to the prograde orbits 
that cover angles A+ = r + 7r/2 and 37r + 7r/2 respectively. The small peak at midpoint 
corresponds to the retrograde orbit that covers an angle Aq5 = 27r + 7 r / 2 .  (b) The photon 
orbits corresponding to the features of the figure on the left. 
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Fig. 9.- Predicted PDS of the light curve of a source at r, /M = 3.001 obtained using the 
response function of Figure 8 and the prescription given in the text. (b) The ACF of the 
same light curve for iVb = 6000 (dark curves) and lhrb = 100 (light curves). 




